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and 
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Abstract. By combining all available information it is possible to extend our numerical 
knowledge of the high- and low-temperature zero-field isothermal susceptibility of the Ising 
model. Estimates of the third most singular term of the ferromagnetic singularity are 
obtained, using both direct estimates and an extension ofthe Generalized Law ofcorrespond- 
ing States. A recent conjecture of Barouch, McCoy and Wu concerning the equality of the 
constant term in the asymptotic expansion of the high- and low-temperature ferromagnetic 
susceptibility is confirmed numerically. Finally, a non-physical critical exponent of the 
low-temperature susceptibility of the triangular lattice is identified. 

1. Introduction 

While an exact analytical solution for the zero-field isothermal susceptibility of the 
Ising model continues to elude us, by combining the recent exact numerical results of 
Barouch et a l (  1973), their extension by Guttmann (1974) and the extended series obtained 
by Sykes et a1 (1972, 1973), it is possible to considerably advance our (numerical) 
knowledge of the susceptibility, both at  high and low temperatures. 

For the square lattice at temperatures T > T,  we may write 

+ Dof + D:( 1 - T,/T)+ 0[(1- T,/T)2] near T + T: (1 .1~)  

and 

kTXO(T) 7 - E;(l+T,/T)ln(l+T,/T)+higher-order terms near T +  - T z ,  (l.lb) 

where the terms with amplitudes C: represent the ferromagnetic singularity at T = T:, 
the terms with amplitudes 0: represent an additive function expanded around the 
ferromagnetic singularity, which is analytic in the physical disc IT1 2- T, ,  and the term 
with amplitude Eof represents the antiferromagnetic singularity at T = - T,. 

For the triangular lattice, which has no simple antiferromagnetic ordering, the 
situation is simpler since then E +  = 0, and (1.lb) does not apply. For the honeycomb 

m 
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lattice, on the other hand, there is an additional pair of singularities on the imaginary 
axis at +iT,. The precise nature of this pair of singularities is not known, but following 
Sykes er al(1972) it is likely that they can be represented by allowing the following two 
terms to represent the square lattice susceptibility near T = f iT, : 

It should be borne in mind that the true nature of this singularity could be logarithmic 
or could contain confluent logarithmic terms. 

At low temperatures, T < T,, we represent the susceptibility by 

+D, +D;(T,/T- I)+O[(T,/T- 1)2] near T + Tc- (1.34 

and 

near T + - Tc-. ----.c kT*o(T) E,ITc/T+ 11 - e +  E ;  IT,/T+ 11’ - e +  O[(T,/T+ 1I2-O] m2 
(1.3b) 

As in the high-temperature case, the terms with amplitudes C; represent the ferro- 
magnetic singularity at  T = Tc-, the terms with amplitudes 0; represent an additive 
function expanded around the ferromagnetic singularity analytic in the physical disc 
(TI < T, ,  but the terms with amplitudes E;  represent a non-physical singularity at 
T = - T,. It should be noted that this singularity is not present for the honeycomb 
or square lattices but is present for the triangular lattice. The exponent 6 in (1.3b) is 
not known exactly but one of the results we obtain here is 8 = 1.25, and we conjecture 
with some confidence that 6 = a exactly. For the square and honeycomb lattices the 
above representation holds with E; 

In terms of the above representation, Barouch er a1 (1973) have calculated C:, C:, 
C;,C; for the square lattice to an accuracy of 10 significant figures. By using the 
generalized Law of Corresponding States-introduced by Betts et al (197l tGut tmann 
(1974) obtained C,’ and C; for the triangular, honeycomb and Kagome lattices to a 
similar accuracy, and by making a further assumption about the behaviour of the free 
energy, C: and C; were also obtained for those lattices, to the same accuracy as the 
other amplitudes?. These results are summarized in table 4. 

It is the purpose of the present paper to obtain numerical estimates of some of the 
other amplitudes and the exponent 6, defined in (l . l) ,  (1.2) and (1.3), and in particular 
to test a conjecture of Barouch er al(1973) that DO+ E DO. 

0 so that (1.3b) does not apply. 

2. The triangular lattice 

The first 16 terms of the high-temperature susceptibility series for the triangular lattice in 
t’ = tanh(J/kT) have been given by Sykes er a1(1972), and the first 16 terms of the low- 
temperature series in U = exp( -4JlkT) have been given by Sykes er a1 (1973). 

Taking the high-temperature series first, we form what we term a residual series 
by subtracting from the given susceptibility series the first 17 terms of the power series 
t See note added in proof. 
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expansion of 

c ; ( ~ - T , / T ) - ~ / ~ + c : ( ~ -  ~ , / ~ ) - 3 / 4  

in U, where C,' and C: are as given in table 4, while 

U, = tanh(J/kT,) = 2-J3. 

The residual series so obtained is denoted by & ( U )  and is given below: 
U- 

~ R + ( v )  = 2 bnun = - 0.0228788 - 0.02443 1 2 ~  + O~OO340892~~ + 0.06294280~ 
n = O  

-0 .182012~~-  1.2914930~ -2 .476183~~-  5.242370~'- 17.92445~' 

-62~92120~~-208*3669~'~-686*9611~' '  -2300*604~ '~  -7803 .721~ '~  

- 26674 .73~ '~  - 91658.23~' - 316409.2~'~  - . . . . 

xR+(u) - c:(l - T,/T)"4+D,+, 

(2.1) 

(2.2) 

From ( l . la )  the dominant terms in xR+(u) will be 

which can be written as xR+(u) - A( 1 - V/U,)''~ + DO+ where A depends on C;, C: and C:. 
This is confirmed by the behaviour of (2.1), the last four ratios being 3.3920, 3.4182, 
3.4361,3.4521, which sequence is monotonically approaching l/u, = 2 + J3 = 3.7320.. . . 
To estimate D: we must evaluate ~ R + ( v )  at U = U,, since the term Cl(1 -  T,/T)"4 of 
course vanishes at T = T,.  

The first method used to do this was to form diagonal and off-diagonal Pade 
approximants to j(R+(u) and evaluate these at U,. The results of this calculation are 
summarized in table 1. It can be seen that the estimates are decreasing, so that we can 
only estimate D,' < -0.038. 

Table 1. Pade approximants to x;(u)l,.=,., for the triangular lattice high-temperature residual 
susceptibility series. 

4 - 0.02642 - 004067 -0.03476 
5 -0.03527 - 0.03524 - 0.03668 
6 -0.03527 -0.03712 -0.03951 
7 -0.03759 -0.03827 -0.03837 
8 -0.03840 -0.03817 

A better method is to estimate C: and to use this to estimate the remainder in (2.1). 
We estimate A by writing 

5. 

(1 - U / V , ) ' ' ~  = 1 a,,u". 
n = O  

Then the ratios b,,/a,,, where b,, is defined by (2.1), should yield a sequence that converges 
to A. The last six such ratios r,, = bn/an are 0~0339846,0~0340422,0~0342322,0~0344273, 
0.0345793, 0.0346955 for n = 11, 12, 13, 14, 15, 16. Extrapolating this increasing 
sequence against l / n  by forming linear extrapolants e,, = nr,, - ( n  - l)r,,- gives the 
following sequence: 0~034675,0~036512,0~036964,0~036707,0~036439 for n = 12, 13, 14, 
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15, 16. If the behaviour exhibited by the last three terms continues, we can estimate 

A = 0.0356k0.002 (2.3) 

so that C: = 0.0690f0.002. Fortunately the estimate of D: given below is almost 
independent of this rather uncertain estimate of A .  

To estimate D; we have 
CO 16 W 16 16 

Do+ = x i ( u , )  = 1 bnv," z c bnoX+ A anv," = 1 bnv: - A 

= - 0.035 13 - 0.0356 x 0.40565 = - 0.0496 0.002. 

anv," 
n = O  n = O  n =  17 n = O  n=O 

(2.4) 

This is consistent with the upper bound D: < -0.038 obtained by the Pade method. 
It disagrees with the result obtained by Sykes et al(l972) of DO+ = -0.0272, though this 
disagreement is not too significant, since Sykes et al were more interested in showing that 
this constant was small rather than in determining its exact value. 

Turning now to the low-temperature susceptibility series on the triangular lattice, 
we form the residual series by subtracting from the given series the first 16 terms of the 
power series expansion of 

c; ( T I T -  1) - 7'4 + c ; ( T,/T- 1)  - 314 

in U = exp( -4JlkT) where C; and C; are as given in table 4, while 

U, = exp(-4J/kT,) = 3. 
The residual series so obtained is denoted x;(u) and is given by 

CO 

x; (u )  = bnun = -0~00180659-0~090781~-0~465930~~ +2.09271u3 - 7 . 1 2 4 8 3 ~ ~  
n = O  

+ 2 2 . 6 7 6 6 ~ ~  - 7 1 . 2 3 0 5 ~ ~  + 2 2 1 . 9 2 3 ~ ~  - 6 8 7 . 9 4 3 ~ ~  +2127.76u9 

- 6555.39~" + 20 165.08~' 

+ 1770327~" - 5 4 0 0 3 5 2 ~ ' ~  + . . . . 
- 6 186 1 . 3 ~ "  + 189526.5~ - 579563~' 

(2.5) 

This series alternates in sign, reflecting the dominance of the singularity on the negative 
real axis at U = -U, = -3. To estimate DO we first proceed as for the high-temperature 
lattice and evaluate Pade approximants to the residual series at U = U , .  The diagonal and 
off-diagonal approximants are shown in table 2. It can be seen that convergence appears 
to be very rapid and we estimate DO = 0.0487k0.001, in excellent agreement with the 

Table 2. Pade approximants to x R ( u ) I , = . ~  for the triangular lattice low-temperature residual 
susceptibility series. 

N [ N  - I/Nl [ N I N I  [ N  + 1INI 

4 -0.04954 -0.04895 -0.04882 
5 -0.04882 -0.04877 -004872 
6 -0.04873 -0.04870 -0.04877 
7 -0,04879 -0.04866 -0.04867 
8 - 0,04867 -0.04867 
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high-temperature result. Before discussing this result further we will estimate D; by 
another method. From (1.3b) we see that 

- E,ITJT+ 11-8 near T -, - T ;  

= B( 1 + u/u,)-O 

where B = (4J/kT,)'E;. To estimate 8 we may use the ratio method since estimates of 
6- 1 are provided by the sequence g, = n( -u,r , -  l ) ,  r, = b,jb,- with b, defined by 
(2.5). The last six estimates of r ,  and g, are shown in table 3, from which it can be seen 

Table 3. A ratio method analysis of the non-physical singularity at L I  = - U ,  = - f  for the 
non-physical singularity of the low-temperature triangular lattice Ising model. 

n r, = g, = n ( - u c r n - l )  

1 1  -3.076105 0.2791 
12 - 3.067145 0.2710 
13 - 3.063733 0.2762 
14 - 3.057952 0.2704 
15 - 3.054590 0.2730 
16 - 3.050482 0.2692 

that the estimates of g, decrease in pairs (indicative of the weak residual singularity 
C;(T,/T- l)'I4 on the positive real axis). This sequence appears to be approaching a 
limit around 0.25. A more careful Pade analysis (not shown) indicates quite clearly that 
this singularity is very close indeed to  8- 1 = a and we conjecture with some confidence 
that 8 = 2 is an exact result. Assuming this to be the case, we may estimate Bin (2.6) from 
the sequence b,/a, where 

m 
a,u" = ( 1  +u/u, ) -5 '4  

n = O  

The last six values of b,/a, are -0.0558737, -0.0559694, -0.0560800, -0.0561604, 
- 0.0562449, - 0.05631 15. Extrapolating these against l/n yields an increasing sequence 
of extrapolants, so assuming that these monotonic trends continue, we estimate 
B = -0.0568 t O-oOO8 or equivalently E; = - 0.0505 t- O.OOo8. 

To estimate D; we have from ( 1 . 3 4  

m 16 

Do = ~ R ( u , )  = c b,u," 1 c b,u,"+ 
n = O  n = O  

= 0*111918+[0~420448- 1.542243](-0.0568) = -0~0482~0*0016.  

This agrees well with the estimate obtained by the Pade method, DO = -0.0487k 0.001, 
and both agree with the high-temperature estimate DO+ = -0.0496-tOQ02. Now 
Barouch er a1 (1973) have conjectured that DO+ = DO for the square lattice, but we would 
expect this type of relation to be lattice-independent, so that our numerical results can 
be considered as evidence in support of their conjecture. Our results for the triangular 
lattice are summarized in table 4. 
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Table 4. Summary of all the amplitudes-and one exponent-obtained in this and earlier 
studies. Results in parentheses are obtained by an extension of the Generalized Law of 
Corresponding States. Those marked with an asterisk* are from Sykes et al(1972). 

Lattice 

Amplitude Triangular Square Honeycomb 

0.0245 189020 
-04HI16835479 

(0.007: ;:;::) 
- 0.0487 2 0.001 
- 0.0505 f 0~0008 
i 
0.9242069582 
0.0634590701 
0.0690 f 0.002 

- 00496 f 0.002 
non-existent 

0.0255369719 
- OOO19894 107 

OX@95?~.;~:': 
-0.115:; 

non-existent 
non-existent 

0.9625817322 
0.0749881538 

(0.093 f0.003) 
-0.11+0.03 

0.196 f 0002* 

0,0277610956 
-0QO26385047 

0.02:;.;:(0.015? E.::;) 
-0.24:; ;: 

non-existent 
non-existent 

16464170761 
0.0994548793 
(0.150 rt 0@04) 

2 -0.24 
0.1 82 f 0.001 * 

3. Square lattice 

For the square lattice Sykes er a1 (1972) have published the first 21 terms of the high- 
temperature susceptibility series in U = tanh(J/kT), and Sykes er a1 (1973) have published 
the first 1 1  terms of the low-temperature susceptibility series in U = exp( -4JlkT). 

Taking the high-temperature series first, we form the residual series ~ R + ( u )  by sub- 
tracting the terms C,'( 1 - T,/T)-7/4 + C:(l- T,/T)-3'4, expanded in U ,  from the suscepti- 
bility series, using C,' and C: from table 4, and U, = tanh(J/kT,) = 4 2  - 1 .  The residual 
series so obtained is 

~ R + ( u )  = -0.1 19651 +0409561~ -0 .154053~~ + 0.392807~~ -0 .304042~~  +0.739688~~ 

- 1.453202~~ +2.38340~' -4*01553~~ +6.31562u9 - 1 4 0 0 0 4 ~ ' ~  

+ 22.5076~" - 63.06530'~ + 9 4 . 9 5 4 2 ~ ' ~  - 294.414v14+ 397.342~1'~ 

- 1 3 7 5 . 3 1 ~ ' ~  + 1 6 6 8 ~ 4 0 ~ ' ~ - 6 5 9 0 ~ 3 1 ~ ' ~ + 7 2 4 9 ~ 7 7 ~ ' ~ - 3 2 5 3 7 ~ 9 ~ ~ ~  

+31805.2u2' - . . . . (3.1) 

Table 5. Pade approximants to ~ R + ( v ) l , = , ~  for the square lattice high-temperature residual 
susceptibility series. 

N [ N  - {/NI [NINI  [N + 1/N] Row average 

4 -0,0783 -0.0771 -0.0771 -0,077 
5 -0.0772 -0.0765 -0.0773 -0.077 
6 -0.0775 -0.0787 -0.0762 -0.077 
7 -0,0766 -0.0753 -0.0798 -0.077 
8 -0.0646 -0.0869 -0.0848 -0.079 
9 -0,0843 -0.0858 -0.0860 -0.085 

10 -0,0860 -0.0859 -0.0859 -0.086 
11  -0.0859 
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The alternating signs reflect the dominance of the antiferromagnetic singularity at 
U = -c,. Our first attempt to estimate the constant term Dof was just to substitute 
L' = c, in (3.1) using (1.1 a). This gives a sum of terms, alternating in sign, with the negative 
terms being consistently larger in magnitude than the positive terms. The sum thus 
establishes an upper bound, which is DO+ < -0.0796. 

One method used to estimate Dof was to form diagonal and off-diagonal Pade 
approximants to  & ( U )  evaluated at ti = U , .  The results are shown in table 5. Like the 
triangular lattice Pade table, these estimates are also decreasing. Since little is known 
about the convergence properties of a Pade table, i t  is only possible to extrapolate such 
a table in a fairly crude fashion. The first method used to extrapolate the table is by 
comparison with the triangular lattice Pade table. There, the last estimate was about 
77 04 of the final value. Assuming that a similar result holds in this case gives an estimate 
of DO+ 2: -0.1 12. A better method is to observe that if we average each row of the Pade 
table, the last four row averages extrapolate roughly linearly against l /n,  giving an 
estimate Dof -Y -0.105. (A similar method of extrapolation was recently used-with 
much more regular data-by Watts (1974)) We conclude from this investigation that 
DO+ = -0.1 1 k0.03. As for the triangular lattice we note that the estimate of Sykes et al 
(1972) of Dof 5 -0.073 is too high, higher even than our upper bound. For Eof we have 
not been able to improve on the estimate of Sykes et al(l972) that EO+ r= 0.19 kO.01 or, 
assuming high-low temperature symmetry of the antiferromagnetic singularity, that 
Eof = 0.196f0.002. For completeness this result is also quoted in table 4. 

Turning now to the low-temperature series, we obtain for the residual series : 
W 

%;(U) = 1 b,u" = - 0.00556474-0*425703~ -0.218008~~ - 1.47208~~ - 2.65479~~ 
n = O  

- 10.4630~~ -37.0071~~- 1 5 5 ~ 8 6 7 ~ ' - 6 8 3 . 1 6 5 ~ ~ - 3 1 3 8 ~ 9 3 ~ ~  

-- 14841.6~'~-71830~3~~'. . . . (3.2) 

All the terms are negative and assuming this trend continues we can establish an upper 
bound on DO by substituting U = U, = 3-2J2 in (3.2). This gives DO < -0.0995. A 
better estimate may be obtained by observing that x ; ( u )  is dominated by the term 

cc 

C;(TJT- l)'l4 - A(l -u/u,)~/~ = anu" near T + Tc- 
n = O  

Estimates of A are given by the sequence bJa,, the last seven of which are : 

0.055 167,0~042288,0*037202,0~033 156,0*030354,0*028 142,0.026364. 

Extrapolating this sequence using a Neville table gives the result A = 0.01 1 :E:;::, from 
which follows C; = 00095!!:!2:':. A better estimate of DO can now be obtained by 
writing, from (1.3a), 

2 11 2 

n = O  f l = O  n = 1 2  
DO = ~ ; ( u ) ( , = , ~  = b,u," 2: 1 b,u,"+ A 1 a,u; 

I 1  12  

= 1 bnu,"- A 1 anul 
f l = O  n = O  

= -0*0994-0.011 x 1.444 = -0.1 + 0 . 0 0 5  5-0.01 . (3.3) 
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Finally, another estimate of DO was obtained by evaluating Pade approximants to 
x;(u) at U = U,. The results are shown in table 6, where it can be seen that the entries 
are again slowly decreasing. Extrapolating row averages against l / n  gives a result 
D, = -0.11, in agreement with that obtained in (3.3). 

Table 6. Pade approximants to X;(U)~,=~, for the square lattice low-temperature residual 
susceptibility series. 

3 -0.0983 -0.1010 -0.10OO 
4 -0.1001 -0.1003 -0.1008 
5 -0,1030 -0,1014 -0,1014 
6 -0,1014 

Our results for the square lattice are summarized in table 4. Within the confidence 
limits quoted it can be seen that the conjecture of Barouch er al, that DO+ = DO, is 
confirmed. 

4. The honeycomb lattice 

The first 32 terms of the high-temperature susceptibility series in u = tanh(J/kT) for the 
honeycomb lattice have been given by Sykes et a1 (1972), and the first 16 terms of the 
low-temperature susceptibility series in z = exp( - 2J /kT)  have been given by Sykes er al 
(1973). As for the othei two lattices, we first form the residual susceptibilities X : ( U )  and 
~ R ( z )  by subtracting the two most singular terms from the given susceptibility series. 
The amplitudes of these singular terms are as given in table 4. The critical temperature is 
U ,  = tanh(J/kT,) = 1 / 4 3  or z ,  = exp(-2J/kTJ = 2 - 4 3 .  

The high-temperature residual series is particularly difficult to analyse since it 
includes contributions from four singularities, symmetrically disposed on the physical 
disc at k U ,  and k iu, . We have been unable to obtain consistent estimates for any of the 
parameters C,' , E : ,  F: or G: as dcfined in (1.1) and (1.2). An estimate of E: has been 
obtained by Sykes er a1 (1972) and this is given in table 4. 

An attempt to  estimate DO+ by forming Pade approximants to X ; ( U )  and evaluating 
these at U, (using (1.la)) leads to a very erratic Pade table (not shown) which shows no 
steady trend and is therefore impossible to  extrapolate. 

Turning to the low-temperature residual series, this is 

~ R ( z )  = C bnzn = -0.00237453 -0.1743862- 1.1 1 7 2 2 ~ ~  - 1 . 6 9 5 9 9 ~ ~  - 2 . 4 8 5 5 7 ~ ~  
n = O  

- 9 . 1 4 8 7 4 ~ ~  - 1 4 . 1 2 6 9 ~ ~  -42,23282'- 104.6482'- 31 1 . 6 7 5 ~ ~  

-895*403~'~-2725.31~' '  - 8 4 0 1 . 6 1 ~ ' ~  - 2 6 4 7 6 . 3 ~ ' ~  - 8 4 5 3 6 . 0 ~ ' ~  

- 2733982'' - 8 9 3 3 0 4 ~ ' ~  - . . . . (4.1) 
Evaluating this at z = z, = 3 - 2 4 2  gives an upper bound D ,  < - 0.209 assuming 
that the terms continue to be of uniform sign. Proceeding as for the square lattice, we 
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can obtain a better estimate by noting that ~ R ( z )  is dominated by the term 
cc 

C;(TJT- 1 p 4  - ~ ( 1  -z/zc)1/4 = A c anzn. 
n = O  

Estimates of A are given by the sequence bJan which, when extrapolateb by a Neville 
table, yields A = 0.02::::: or C; = 0.02:;:;:. 

An estimate of DO is therefore given by 
X 16 CO 

X;(Z,) = DO = C bnz," z 1 b,z,"+A anz2 
n = O  n = O  n = 1 7  

16 16 

= 2 bnz,"- A anz: 
n = O  n = O  

= -0.2092-0.02 x 1,4056 = -0.24T::,O:. (4.2) 
An alternative method of estimating D; is just to form Pade approximants to x ; ( z )  and 
evaluate these at z = z,. The Pade approximants so obtained are shown in table 7. 

Table 7. Pade approximants to x R ( z ) I ~ = ~ ~  for the honeycomb lattice low-temperature 
residual susceptibility series. 

N [N-  1!N] [N/N] [N + 1/NI 

4 -0.2013 -0,2061 -0.1912 
5 -0.0846 -0.2185 -0.2114 
6 -0.2095 -0,2121 -0,2131 
7 -0.2126 -0.2154 -0,2149 
8 -0.2149 -0.2151 

They are seen to be slowly decreasing, and extrapolating row averages against 1/N yields 
DO N -0.23, in agreement with the result obtained in (4.2). Since D,C = D; was found 
to hold for both the square and triangular lattices (within the confidence limits quoted) 
it is almost certainly true for the honeycomb lattice as well. In that case we can write 

Our results for the honeycomb lattice are also summarized in table 4. In Yj 5 we 
DO+ z -0.24. 

consider these results in the light of the Generalized Law of Corresponding States. 

5. The generalized law of corresponding states 

This law, first enunciated by Betts et a1 (1971), and recently extended by Ritchie and 
Betts (1975), asserts that for a number of lattice models including the Ising model 
the most singular part of the free energy per site on lattice X , f X ( t X ,  h x )  is related to the 
most singular part of the free energy per site on lattice Y , f y ( t y ,  h,) by the relation 

(5.1) 
Here the reduced magnetic field variable h = p H / k T  (in the usual notation) is scaled 
according to 

(5.2) 

nxfx( tx3  hx)  = nYfY(tY 9 A Y )  = f k  h).  

nxh, = nyhy  = h 
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and the reduced temperature r = T/T,  - 1 is scaled according to 

gxtx = gyty = t .  (5.3) 

This generalized law is also known as ‘lattice-lattice scaling’. The parameters n, and 
g, are lattice-dependent and are shown in table 8. From (5.1) it follows that the field 

Table 8. Critical scaling parameters g, and n, for the common planar Ising lattices. 

Lattice g, “X 
~ 

Triangular 1.0000000000 1.0000000000 
Square 1.134568 12 12 1.299038 1057 
Honeycomb 1.3841935033 2.0000000000 

derivatives of the free energy are related by 

while in zero field the derivatives behave like 

= G -  1,x ( t  x ) - Y ;  t < 0. 

Combining the above equations we obtain 
- Y 2 1  

t > O  - G L X  (!z)z1-1(E5) 
G Y  

and 

( 5 . 5 )  

Using these results the amplitudes C: and C; for the triangular, Kagome and honey- 
comb lattices were obtained by Guttmann (1974) from the square lattice values of 
Barouch er a1 (1973). 

To obtain the amplitudes C: and C; it is necessary to assume that the next most 
singular term in the free energy also scales, that is, (5.1) holds with f replaced by the most 
singular term plus the next most singular term. In this way the results for C: and C; 
for the triangular and honeycomb lattices were also obtained (Guttmann 1974). It 
would be nice to estimate C: and C; for all lattices from the given estimates but this 
involves the assumption that (5.1) holds for the most singular term plus the next two most 
singular terms. As we shall show by considering the exact results for the spontaneous 
magnetization, this does not appear to be the case. 

The square lattice Ising model spontaneous magnetization is given by Yang (1952) as 

(5.6) P ( U )  = ( 1 + U)*( 1 - U)- 4(u, - U)( l/u, - U) 

I ( T )  = B,(T,/T- i )1 /8  + B,(T,/T- 1)9’8 + B,(T,/T- 1)17’8  + . . . , 
where U = exp( -4J/kT,) and U, = 3 - 2 4 2 .  Writing this as 

(5.7) 



1246 A J Guttmann 

the amplitudes 
manipulation. 
triangular and 

I Bo,  B, , B ,  may be obtained by tedious but straightforward algebraic 
The results of this calculation, with the corresponding results for the 
honeycomb lattices, are shown in table 9. According to the generalized 

Table 9. Exact spontaneous magnetization amplitudes for the common planar Ising lattices. 
Formation of the quantity B,B,/B: illustrates the (slight) breakdown of lattice-lattice scaling 
for the third most singular term of the free energy. 

Triangular Square Honeycomb 

C J(2)3-1'16Kh 21/2K1'8 27lI6Kll8 Bo 

8 2  1259J(2)K{' '1384 1243.2' ' bKh"8/3 .  2' 1227v(2)Kh7'*/9. 2.. 3"" 
Bl - 9  J(2)K:"i8 -9J(2). 2"16K:'8/16 -3J(6)Kz's/23. 31r16  

K C  0.2746530721 67 0.4406867935 10 0,658478948462 
BoiBi - 8 P K c  - 8 J(2)PKc - 843)/9K, 
B , B , / B ;  w w 

law of corresponding states, assuming its extension to the next most singular term of 
the free energy, we can write 

Bo,x B1,Y _ -  gY 
B0.Y B1,x gx' 

(5.8) 

For the triangular (X) and square (Y) lattices the left-hand side is given by 1.1345681212 
while the right-hand side is, from table 8, given by 1.1345681212. Similarly, for the square 
(X) and honeycomb (Y) lattice we have left-hand side = 1.220017976 = right-hand side, 
thus confirming lattice-lattice scaling for the next most singular term also. If we try to 
extend this to the third most singular term we obtain 

B1,x B2,Y gY 

Bl<Y B2,x gx 
_ -  

Combining this with (5.8) we obtain 

B0,xBz.x = BO.YB2.Y 
BI.X B?,Y ' 

(5.9) 

(5.10) 

That is, BoB,/B: should be lattice-independent, or an invariant. The quantity B,B,/B: is 
also tabulated in table 9 and it can be seen that it is not constant, as predicted by (5.10). 
The square lattice value of B,B,/B: differs from both the triangular and honeycomb 
lattices by 1.3 %, so that the lattice-lattice scaling hypothesis breaks down for the third 
most singular term of the free energy by a small amount. 

Now the susceptibility amplitudes C: and C ;  that we have estimated, notably C: 
for the triangular lattice and C; for the square and honeycomb lattices, have associated 
uncertainties considerably greater than 1.3 %. We may therefore assume that lattice- 
lattice scaling for the third most singular term holds within the accuracy of this calcula- 
tion, and we estimate C: and C; for the other lattices using the relations 

(5.1 1) 
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Taking Cl.,ri = 0.0690k OG02 from table 4, we estimate from (5.1 1) Cl.sq = 0.093 ?I 0.003 
and c;,,, = 0~150+0@04. For T < T,  we take C,,, = 0@095?,":gg:$ as the most 
accurate estimate of C,, and from (5.11) we estimate = 0~0071°'002 0.001 and 
C, , ,  = 0.0151g:gg:, compared to the direct estimate of C, , ,  = 0.02Tg:g:. These new 
results are shown in table 4, in parentheses, to indicate that they are not as reliable as the 
other results shown in the taole. The above results for C; and C; could also have been 
derived from the relation 

(5.12) 

We emphasiw that this expression and (5.1 l), by analogy with the exact results of the 
spontaneous magnetization, are likely to be in error by about 1 % and we do not suggest 
they are exact. Rather, they appear to be sufficiently close to exactness to be useful. 

6. Discussion 

It has been our intention to derive as much numerical information as possible about the 
zero-field isothermal susceptibility of the two-dimensional king model on the three most 
common planar lattices. The two leading amplitude terms at both high and low 
temperatures have been derived in an earlier paper (Guttmann 1974). In this paper we 
have derived the next amplitude term, and the constant term for all three lattices. We 
have confirmed-within the numerical uncertainty of our estimates-the conjecture 
made by Barouch er a / (  1972) that the constant term is equal at high and low temperatures. 
It is noteworthy in this context that Sykes er al(1972) obtained a similar result for the 
antiferromagnetic susceptibility ; that is, they found numerical agreement for the 
constant term in the asymptotic expansion of the antiferromagnetic susceptibility at 
high and low temperatures for both the square and honeycomb lattices. The triangular 
lattice of course has no simple antiferromagnetic ordered state. 

Finally we have estimated the critical exponent corresponding to the non-physical 
singularity of the triangular lattice low-temperature susceptibility at U = -U, = -+, 
and have found it to be approximately equal to 2, corresponding to a divergence. 

In the following paper we attempt to carry over as much of this work as possible to 
the three-dimensional Ising model. 
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Note  added in proof. Since this paper was accepted, the paper of Ritchie and Betts 
(1975) has appeared, and overlaps some of this work. Specifically, they show that 
lattice-lattice scaling extends to the second most singular term only if the temperature 
and field scaling variables are as given below (5.1) and (5.2), and thus differ from those 
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used in the original lattice-lattice scaling theory. Further, they show that the next 
most singular term of the free energy does not scale for the Kagome lattice. This may 
be connected with the fact that, for the Kagome lattice, each lattice site is surrounded 
by tesalations of 3 and 6 sides, while for the square, triangular and honeycomb lattices, 
the tessalations surrounding each lattice site are all of the same size. 
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